Free Hospital EMR and EHR Newsletter Want to receive the latest news on EMR, Meaningful Use, ARRA and Healthcare IT sent straight to your email? Join thousands of healthcare pros who subscribe to Hospital EMR and EHR for FREE!

Next Steps In Making Healthcare AI Practical

Posted on November 30, 2018 I Written By

Anne Zieger is veteran healthcare branding and communications expert with more than 25 years of industry experience. and her commentaries have appeared in dozens of international business publications, including Forbes, Business Week and Information Week. She has also worked extensively healthcare and health IT organizations, including several Fortune 500 companies. She can be reached at @ziegerhealth or www.ziegerhealthcare.com.

In recent times, AI has joined blockchain on the list of technologies that just sort of crept into the health IT toolkit.

After all, blockchain was borne out of the development of bitcoin, and not so long ago the idea that it was good for anything else wasn’t out there. I doubt its creators ever contemplated using it for secure medical data exchange, though the notion seems obvious in retrospect.

And until fairly recently, artificial intelligence was largely a plaything for advanced computing researchers. I’m sure some AI researchers gave thought to cyborg doctors that could diagnose patients while beating them at chess and serving them lunch, but few practical applications existed.

Today, blockchain is at the core of countless health IT initiatives, many by vendors but an increasing number by providers as well. Healthcare AI projects, for their part, seem likely to represent the next wave of “new stuff” adoption. It’s at the stage blockchain was a year or two ago.

Before AI becomes more widely adopted in healthcare circles, though, the industry needs to tackle some practical issues with AI, and the list of “to-dos” keeps expanding. Only a few months ago, I wrote an item citing a few obstacles to healthcare AI deployment, which included:

  • The need to make sure clinicians understand how the AI draws its conclusions
  • Integrating AI applications with existing clinical workflow
  • Selecting, cleaning and normalizing healthcare data used to “train” the AI

Since then, other tough challenges to the use of healthcare AI have emerged as the healthcare leaders think things over, such as:

Agreeing on best practices

Sure, hospitals would be interested in rolling out machine learning if they could, say, decrease the length of hospital stays for pneumonia and save millions. The thing is, how would they get going? At present, there’s no real playbook as to how these kinds of applications should be conceptualized, developed and maintained. Until healthcare leaders reach a consensus position on how healthcare AI projects should generally work, such projects may be too risky and/or prohibitively expensive for providers to consider.

Identifying use cases

As an editor, I see a few interesting healthcare AI case studies trickle into my email inbox every week, which keeps me intrigued. The thing is, if I were a healthcare CIO this probably wouldn’t be enough information to help me decide whether it’s time to take up the healthcare AI torch. Until we’ve identified some solid use cases for healthcare AI, almost anything providers do with it is likely to be highly experimental. Yes, there are some organizations that can afford to research new tech but many just don’t have the staff or resources to invest. Until some well-documented standard use cases for healthcare AI emerge, they’re likely to hang back.

The healthcare AI discussion is clearly at a relatively early stage, and more obstacles are likely to show up as providers grapple with the technology. In the meantime, getting these handled is certainly enough of a challenge.

Interoperability Problems Undercut Conclusions of CHIME Most Wired Survey

Posted on November 13, 2018 I Written By

Anne Zieger is veteran healthcare branding and communications expert with more than 25 years of industry experience. and her commentaries have appeared in dozens of international business publications, including Forbes, Business Week and Information Week. She has also worked extensively healthcare and health IT organizations, including several Fortune 500 companies. She can be reached at @ziegerhealth or www.ziegerhealthcare.com.

Most of you have probably already seen the topline results from CHIME’s  “Healthcare’s Most Wired: National Trends 2018” study, which was released last month.

Some of the more interesting numbers coming out of the survey, at least for me, included the following:

  • Just 60% of responding physicians could access a hospital network’s virtual patient visit technology from outside its network, which kinda defeats the purpose of decentralizing care delivery.
  • The number of clinical alerts sent from a surveillance system integrated with an EHR topped out at 58% (alerts to critical care units), with 35% of respondents reporting that they had no surveillance system in place. This seems like quite a lost opportunity.
  • Virtually all (94%) participating organizations said that their organization’s EHR could consume discrete data, and 64% said they could incorporate CCDs and CCRs from physician-office EHRs as discrete data.

What really stands out for me, though, is that if CHIME’s overall analysis is correct, many aspects of our data analytics and patient engagement progress still hang in the balance.

Perhaps by design, the hospital industry comes out looking like it’s doing well in most of the technology strategy areas that it has questions about in the survey, but leaves out some important areas of weakness.

Specifically, in the introduction to its survey report, the group lists “integration and interoperability” as one of two groups of foundational technologies that must be in place before population health management/value-based care,  patient engagement and telehealth programs can proceed.

If that’s true, and it probably is, it throws up a red flag, which is probably why the report glossed over the fact that overall interoperability between hospitals is still very much in question. (If nothing else, it’s high time the hospitals adjust their interoperability expectations.) While it did cite numbers regarding what can be done with CCDs, it didn’t address the much bigger problems the industry faces in sharing data more fluidly.

Look, I don’t mean to be too literal here. Even if CHIME didn’t say so specifically, hospitals and health systems can make some progress on population health, patient engagement, and telehealth strategies even if they’re forced to stick to using their own internal data. Failing to establish fluid health data sharing between facility A and facility B may lead to less-than-ideal results, but it doesn’t stop either of them from marching towards goals like PHM or value-based care individually.

On the other hand, there certainly is an extent to which a lack of interoperability drags down the quality of our results. Perhaps the data sets we have are good enough even if they’re incomplete, but I think we’ve already got a pretty good sense that no amount of CCD exchange will get the results we ultimately hope to see. In other words, I’m suggesting that we take the CHIME survey’s data points in context.

Hospitals Taking Next-Gen EHR Development Seriously

Posted on October 22, 2018 I Written By

Anne Zieger is veteran healthcare branding and communications expert with more than 25 years of industry experience. and her commentaries have appeared in dozens of international business publications, including Forbes, Business Week and Information Week. She has also worked extensively healthcare and health IT organizations, including several Fortune 500 companies. She can be reached at @ziegerhealth or www.ziegerhealthcare.com.

Physicians have never been terribly happy with EHRs, most of which have done little to meet the lofty clinical goals set forth by healthcare leaders. Despite the fact that EHRs have been a fact of life in medicine for nearly a decade, health IT leaders don’t seem to have figured out how to build a significantly better one — or even what “better” means.

While there has been the occasional project leveraging big data from EHRs to improve care processes, little has been done that makes it simple for physicians to benefit from these insights on a day-to-day basis. Not only that, while EHRs may have become more usable over time, they still don’t present patient data in an intuitive manner.

However, hospital leaders have may be developing a more-focused idea of how a next-gen EHR should work, at least if recent efforts by Stanford Medicine and Penn Medicine are any indication.

For example, Stanford has developed a next-gen EHR model which it argues could be rolled out within the next 10 years. The idea behind the model would be that clinicians and other healthcare professions would simply take care of patients, with information flowing automatically to all relevant parties, including payers, hospitals, physicians and patients. Its vision seems far less superficial than much of the EHR innovation happy talk we’ve seen in the past.

For example, in this model, an automated physician’s assistant would “listen” to interactions between doctors and patients and analyze what was said. The assistant would then record all relevant information in the physical exam section of the chart, sorting it based on what was said in the room and what verbal cues clinicians provided.

Another initiative comes from Penn Medicine, where leaders are working to transform EHRs into more streamlined, interactive tools which make clinical work easier and drive best outcomes. Again, while many hospitals and health centers have talked a good game on this front, Penn seems to be particularly serious about making EHRs valuable. “We are approaching this endeavor as if it were building a new clinical facility, laboratory or training program,” said University of Pennsylvania Health System CEO Ralph Muller in a prepared statement.

Penn hasn’t gone into many specifics as to what its next-gen EHR would look like, but in its recent statement, it provided a few hints. These included the suggestion that they should allow doctors to “subscribe” to patients’ clinical information to get real-time updates when action is required, something along the lines of what social media networks already do with feeds and notifications.

Of course, there’s a huge gap between visions and practical EHR limitations. And there’s obviously a lot of ways in which the same general goals can be met. For example, another way to talk about the same issues comes from HIT superstar Dr. John Halamka, chief information officer of the Beth Israel Deaconess Medical Center and CIO and dean for technology at Harvard Medical School.

In a blog post looking at the shift to EHR 2.0, Halamka argues for the development of a new Care Management Medical Record which enrolls patients in protocols based on conditions then ensures that they get recommended services. He also argues that EHRs should be seen as flexible platforms upon which entrepreneurs can create add-on functionality, something like apps that rest on top of mobile operating systems.

My gut feeling is that all told, we are seeing from real progress here, and that particularly given the emergence of more mature AI tools, a more-flexible EHR demanding far less physician involvement will come together. However, it’s worth noting that the Stanford researchers are looking at a 10-year timeline.  To me, it seems unlikely that things will move along any faster than that.

Montefiore Health Makes Big AI Play

Posted on September 24, 2018 I Written By

Anne Zieger is veteran healthcare branding and communications expert with more than 25 years of industry experience. and her commentaries have appeared in dozens of international business publications, including Forbes, Business Week and Information Week. She has also worked extensively healthcare and health IT organizations, including several Fortune 500 companies. She can be reached at @ziegerhealth or www.ziegerhealthcare.com.

I’ve been doing a lot of research on healthcare AI applications lately. Not surprisingly, while people find the abstract issues involved to be intriguing, most would prefer to hear news of real-life projects, so I’ve been on the lookout for good examples.

One interesting case study, which appeared recently in Health IT Analytics, comes from Montefiore Health System, which has been building up its AI capabilities. Over the past three years, it has created an AI framework leveraging a data lake, infrastructure upgrades and predictive analytics algorithms. The AI is focused on addressing expensive, dangerous health issues, HIA reports.

“We have created a system that harvests every piece of data that we can possibly find, from our own EMRs and devices to patient-generated data to socio-economic data from the community,” said Parsa Mirhaji, MD, PhD, director of the Center for Health Data Innovations at Montefiore and the Albert Einstein College of Medicine, who spoke with the publication.

Back in 2015, Mirhaji kicked off a project bringing semantic data lake technology to his organization. The first pilot using the technology was designed to find patients at risk of death or intubation within 48 hours. Now, clinicians can also see red flags for admitted patients with increased risk of mortality 3 to 5 days in advance.

In 2017, the health system also rolled out advanced sepsis detection tools and a respiratory failure detection algorithm called APPROVE, which identifies patients at a raised risk of prolonged ventilation up to 48 hours before onset, HIA reported.

The net result of these efforts was dubbed PALM, the Patient-centered Analytical  Learning Machine. PALM “represents a very new way of interacting with data in healthcare,” Miraji told HIA.

What makes PALM special is that it speeds up the process of collecting, curating, cleaning and accessing metadata which must be conducted before the data can be used to train AI models. In most cases, the process of collecting data for AI use is largely manual, but PALM automates this process, Miraji told the publication.

This is because the data lake and its graph repositories can find relationships between individual data elements on an on-the-fly basis. This automation lets Montefiore cut way down on labor needed to get these results. Miraji noted that ordinarily, it would take a team of data analysts, database administrators and designers to achieve this result.

PALM also benefits from a souped-up hardware architecture, which Montefiore created with help from Intel and other technology partners. The improved architecture includes the capacity for more system memory and processing power.

The final step in optimizing the PALM system was to integrate it into the health system’s clinical workflow. This seems to have been the hardest step. “I will say right away that I don’t think we have completely solved the problem of integrating analytics seamlessly into the workflow,” Miraji admitted to HIA.

A Nursing Informatics Perspective on Healthcare Analytics – Interview with Charles Boicey

Posted on September 21, 2018 I Written By

John Lynn is the Founder of the HealthcareScene.com blog network which currently consists of 10 blogs containing over 8000 articles with John having written over 4000 of the articles himself. These EMR and Healthcare IT related articles have been viewed over 16 million times. John also manages Healthcare IT Central and Healthcare IT Today, the leading career Health IT job board and blog. John is co-founder of InfluentialNetworks.com and Physia.com. John is highly involved in social media, and in addition to his blogs can also be found on Twitter: @techguy and @ehrandhit and LinkedIn.

Healthcare informatics has been around for a long time. However, from my perspective, it feels like there’s something different in the air when it comes to healthcare informatics. I get the feeling that we’re on the precipice of something really special happening. In fact, I think we already start to see value being created by healthcare informaticists.

As Healthcare Scene continues to explore this subject, we sat down with informatics expert, Charles Boicey, Chief Innovation Officer at Clearsense, to talk with him about what’s changed in healthcare informatics that makes it different today than in the past. We also talk about what’s needed to make healthcare analytics efforts successful at organizations and what analytics trend he’s watching most. Plus, we had to talk about his background as a nurse and how a nursing background really helps his informatics work.

If you want to hear of some practical uses of healthcare analytics and how your organization can benefit from it, you’ll enjoy our interview with Charles Boicey.

Be sure and subscribe to all of Healthcare Scene’s videos on YouTube. Also, take a minute to check out EXPO.health and join us in Boston to mix and mingle with amazing healthcare IT professionals like Charles Boicey.

Health IT Consulting Demand To Explode This Year

Posted on August 24, 2018 I Written By

Anne Zieger is veteran healthcare branding and communications expert with more than 25 years of industry experience. and her commentaries have appeared in dozens of international business publications, including Forbes, Business Week and Information Week. She has also worked extensively healthcare and health IT organizations, including several Fortune 500 companies. She can be reached at @ziegerhealth or www.ziegerhealthcare.com.

As payment models shift from fee-for-service to value-based care, hospitals are having to adopt new technologies and tweak existing ones. The thing is, it takes a mighty team of IT pros to make all this happen. In some cases, a provider has enough resources to handle this kind of big transition, but most need some help, especially when they’re handling major infrastructure improvements or even switching out technologies.

This seems to be at least part of what’s driving a dramatic increase in spending on health IT consulting, according to a new study from Black Book Research. The study drew on input from 1,586 professionals with knowledge of the US health IT industry.

Black Book concluded that health IT management consulting spending has grown from $20 billion in 2016 to $45 billion last year. Not only that, the firm expects to see this number climb to nearly $53 billion for 2018. That’s a massive increase, particularly given that providers were already spending heavily on consultants as they beat their enterprise EHRs into shape.

According to the analyst firm, 64% of last year’s spending paid for implementation of software, information systems, systems integration and optimization and support for mergers and acquisitions. This summary covers a lot of ground, but it’s hardly surprising given the drastic changes underway.

Going forward, respondents expect three key forces to drive healthcare consulting spend, including a lack of highly-skilled IT professionals (cited by 81% of respondents), adoption of cloud technology in healthcare (74%) and growing industry digitalization (71%). (I’d also expect to see investment in new organizational infrastructures — for, let’s say, ACOs)  — will continue to increase in importance as well.)

Providers responding to the study said that they expect to hire health IT consultants for EHR and RCM system optimization (61%) and to offer expertise in software training and implementation (46%) next year. Other areas providers hope to address include value-based care (39%), cloud infrastructure (36%), compliance issues (33%) and a grab bag of big data, decision support and analytics projects (31%).

The vast majority of respondents (84%) said they expect to enter into a wide range of consulting agreements to include work with single-shop consultants, single freelancers, group purchasing organizations, HIT vendors, networks of freelancers, boutique advisory firms and traditional major consultancies, Black Book reported. In other words, it’s all hands on deck!

3 Key Steps to Driving your Revenue Strategy

Posted on July 9, 2018 I Written By

The following is a guest blog post by Brad Josephson is the Director of Marketing and Communications at PMMC.

For healthcare providers struggling to accurately collect reimbursement, developing a revenue strategy based off a foundation of accuracy is the most efficient way to ensure revenue integrity throughout the revenue cycle.

Currently, many hospitals operate under multiple systems running for their different departments within the organization. This type of internal structure can threaten the accuracy of the analytics because data is forced to come into multiple systems, increasing the chances that the data will be misrepresented.

By maintaining revenue integrity, not only does it give hospitals assurance that the data they’ve collected is current and accurate, but it also provides invaluable leverage with the payer when it comes time to (re)negotiating payer contracts.

Let’s begin by starting from the ground up…

Here are the 3 steps needed for maintaining revenue integrity:

  • Creating a foundation backed by accurate analytics
  • Breaking down the departmental siloes
  • Preparing ahead of time for consumerism and price transparency

Accuracy Drives Meaningful Analytics

The first step toward maintaining revenue integrity is to assess whether your data is accurate. We know that accurate data drives meaningful analytics, essentially functioning as the engine of the revenue cycle.

And what happens when you stop taking care of the engine regularly and it no longer works properly? It not only costs you a lot of money to repair the engine, but you may also have to pay for other parts of the car that were damaged by the engine failure.

What if, however, you were able to visualize pie charts and bar graphs on your car’s dashboard that showed the current health of the engine to inform you when it requires a maintenance check?

You would be better informed about the current state of your engine and have a greater urgency to get the car repaired.

This same principle applies to healthcare organizations looking to increase the accuracy of their data to drive meaningful analytics. While some organizations struggle to draw valuable insight from pieces of raw data, data visualization tools are more efficient because it allows the user to see a complete dashboard with a drill-down capability to gain a deeper and clearer understanding of the implications of their data analytics.

Data visualization allows healthcare providers to quickly identify meaningful trends. Here are the 4 key benefits of implementing data visualization:

  • Easily grasp more information
  • Discover relationships and patterns
  • Identify emerging trends faster
  • Directly interact with data

Figure 1: Payer Dashboard

Removing Departmental Siloes  

While data visualization does generate helpful insight into current and future trends, it begins with storing the data in one integrated system so that different departments can easily communicate regarding the data.

System integration is crucial to maintaining revenue integrity because it dramatically lowers the likelihood of data errors, missed reimbursement, and isolated decisions that don’t look at the full revenue picture. Here is a list of other issues associated with organizations running revenue siloes:

  • No consistent accuracy metrics driving performance and revenue.
  • Different data sources and systems drive independent and isolated decisions without known impact on the rest of the revenue cycle.
  • Departments cannot leverage analytics and insight into contract and payer performance.

In the spirit of the recent international World Cup games, think of revenue siloes like playing for a professional soccer team.

Similar to the structure of a hospital’s revenue team, soccer teams are large organizations that need to be able to clearly communicate with each other quickly in order to make calls on-the-spot. These quick decisions can be the difference in turning the ball over to the other team or scoring a goal in the final minutes so it’s crucial that everyone knows their role on the team.

If other players don’t understand the plays that are being called, however, then mistakes will be made that could cost them the game. Each player on the team needs to study the same playbook so they stay on the same page and decrease the chances that a costly mistake will be made.

A hospital’s Managed Care department works in a similar way. If Managed Care is preparing to renegotiate payer contracts, they need to fully understand and have insight into underpayment and denial trends across multiple payers.

Preparing Now for Consumerism and Price Transparency

Now that we know the reimbursement rate is accurate, how do we communicate an accurate price to patients in order to encourage upfront payment?

Studies have shown that by increasing accuracy in pricing estimates, it increases the likelihood that patients pay upfront, which can help your organization lower bad debt.

In an effort to migrate to a more patient-centric approach, these accurate online estimates also enable hospitals to address the patient’s fear of the unknown with healthcare of ‘how much is this procedure going to cost?’ By giving the patient more control over their financial responsibility, hospitals can become a leader in pricing transparency for their entire community while expanding on their market share.

At the end of the day, what this all comes down to is maintaining accuracy to help drive your revenue strategy. By integrating all data into a single system, the hospital is positioned to identify trends more quickly while increasing the accuracy of their patient estimates, ultimately driving your revenue strategy to new heights.

With many healthcare organizations still making the transition away from the traditional fee-for-service model, now is the time to prepare for consumerism and value-based care. Take some time to evaluate where your organization currently stands in the local market as well as any pricing adjustments that need to be made.

About Brad Josephson
Brad Josephson is the Director of Marketing and Communications at PMMC, a provider of revenue cycle software and contact management services for healthcare providers. Brad received a Bachelor of Arts, Public Relations and Marketing Degree from Drake University. He has worked at PMMC for over three years and has a deep knowledge of hospital revenue cycle management tools which improves the financial performance of healthcare organizations.

Healthcare Interoperability Insights

Posted on June 29, 2018 I Written By

John Lynn is the Founder of the HealthcareScene.com blog network which currently consists of 10 blogs containing over 8000 articles with John having written over 4000 of the articles himself. These EMR and Healthcare IT related articles have been viewed over 16 million times. John also manages Healthcare IT Central and Healthcare IT Today, the leading career Health IT job board and blog. John is co-founder of InfluentialNetworks.com and Physia.com. John is highly involved in social media, and in addition to his blogs can also be found on Twitter: @techguy and @ehrandhit and LinkedIn.

I came across this great video by Diameter Health where Bonny Roberts talked with a wide variety of people at the interoperability showcase at HIMSS. If you want to get a feel for the challenges and opportunities associated with healthcare interoperability, take 5 minutes to watch this video:

What do you think of these healthcare interoperability perspectives? Does one of them stand out more than others?

I love the statement that’s on the Diameter Health website:

“We Cure Clinical Data Disorder”

What an incredible way to describe clinical data today. I’m not sure the ICD-10 code for it, but there’s definitely a lot of clinical data disorder. It takes a real professional to clean the data, organize the data, enrich the data, and know how to make that data useful to people. IT’s not a disorder that most people can treat on their own.

What’s a little bit scary is that this disorder is not going to get any easier. More data is on its way. Better to deal with your disorder now before it becomes a full on chronic condition.

Healthcare Interoperability is Solved … But What Does That Really Mean? – #HITExpo Insights

Posted on June 12, 2018 I Written By

John Lynn is the Founder of the HealthcareScene.com blog network which currently consists of 10 blogs containing over 8000 articles with John having written over 4000 of the articles himself. These EMR and Healthcare IT related articles have been viewed over 16 million times. John also manages Healthcare IT Central and Healthcare IT Today, the leading career Health IT job board and blog. John is co-founder of InfluentialNetworks.com and Physia.com. John is highly involved in social media, and in addition to his blogs can also be found on Twitter: @techguy and @ehrandhit and LinkedIn.

One of the best parts of the new community we created at the Health IT Expo conference is the way attendees at the conference and those in the broader healthcare IT community engage on Twitter using the #HITExpo hashtag before, during, and after the event.  It’s a treasure trove of insights, ideas, practical innovations, and amazing people.  Don’t forget that last part since social media platforms are great at connecting people even if they are usually in the news for other reasons.

A great example of some great knowledge sharing that happened on the #HITExpo hashtag came from Don Lee (@dflee30) who runs #HCBiz, a long time podcast which he recorded live from Health IT Expo.  After the event, Don offered his thoughts on what he thought was the most important conversation about “Solving Interoperability” that came from the conference.  You can read his thoughts on Twitter or we’ve compiled all 23 tweets for easy reading below (A Big Thanks to Thread Reader for making this easy).

As shared by Don Lee:

1/ Finally working through all my notes from the #HITExpo. The most important conversation to me was the one about “solving interoperability” with @RasuShrestha@PaulMBlack and @techguy.

2/ Rasu told the story of what UPMC accomplished using DBMotion. How it enabled the flow of data amongst the many hospitals, clinics and docs in their very large system. #hitexpo

3/ John challenged him a bit and said: it sounds like you’re saying that you’ve solved #interoperability. Is that what you’re telling us? #hitexpo

4/ Rasu explained in more detail that they had done the hard work of establishing syntactic interop amongst the various systems they dealt with (I.e. they can physically move the data from one system to another and put it in a proper place). #hitexpo

5/ He went on and explained how they had then done the hard work of establishing semantic interoperability amongst the many systems they deal with. That means now all the data could be moved, put in its proper place, AND they knew what it meant. #hitexpo

6/ Syntactic interop isn’t very useful in and of itself. You have data but it’s not mastered and not yet useable in analytics. #hitexpo

7/ Semantic interop is the mastering of the data in such a way that you are confident you can use it in analytics, ML, AI, etc. Now you can, say, find the most recent BP for a patient pop regardless of which EMR in your system it originated. And have confidence in it. #hitexpo

8/ Semantic interop is closely related to the concept of #DataFidelity that @BigDataCXO talks about. It’s the quality of data for a purpose. And it’s very hard work. #hitexpo

9/ In the end, @RasuShrestha’s answer was that UPMC had done all of that hard work and therefore had made huge strides in solving interop within their system. He said “I’m not flying the mission accomplished banner just yet”. #hitexpo

10/ Then @PaulMBlack – CEO at @Allscripts – said that @RasuShrestha was being modest and that they had in fact “Solved interoperability.”

I think he’s right and that’s what this tweet storm is about. Coincidentally, it’s a matter of semantics. #hitexpo

11/ I think Rasu dialed it back a bit because he knew that people would hear that and think it means something different. #hitexpo

12/ The overall industry conversation tends to be about ubiquitous, semantic interop where all data is available everywhere and everyone knows what it means. I believe Rasu was saying that they hadn’t achieved that. And that makes sense… because it’s impossible. #hitexpo

13/ @GraceCordovano asked the perfect question and I wish there had been a whole session dedicated to answering it: (paraphrasing) What’s the difference between your institutional definition of interop and what the patients are talking about? #hitexpo

14/ The answer to that question is the crux of our issue. The thing patients want and need is for everyone who cares for them to be on the same page. Interop is very relevant to that issue, obviously, but there’s a lot of friction and it goes way beyond tech. #hitexpo

15/ Also, despite common misconception, no other industry has solved this either. Sure, my credit card works in Europe and Asia and gets back to my bank in the US, but that’s just a use case. There is no ubiquitous semantic interop between JP Morgan Chase and HSBC.

16/ There are lots of use cases that work in healthcare too. E-Prescribing, claims processing and all the related HIPAA transactions, etc. #hitexpo

17/ Also worth noting… Canada has single payer system and they also don’t have clinical interoperability.

This is not a problem unique to healthcare nor the US. #hitexpo

18/ So healthcare needs to pick its use cases and do the hard work. That’s what Rasu described on stage. That’s what Paul was saying has been accomplished. They are both right. And you can do it too. #hitexpo

19/ So good news: #interoperability is solved in #healthcare.

Bad news: It’s a ton of work and everyone needs to do it.

More bad news: You have to keep doing it forever (it breaks, new partners, new sources, new data to care about, etc). #hitexpo

19/ Some day there will be patient mediated exchange that solves the patient side of the problem and does it in a way that works for everyone. Maybe on a #blockchain. Maybe something else. But it’s 10+ years away. #hitexpo

20/ In the meantime my recommendation to clinical orgs – support your regional #HIE. Even UPMC’s very good solution only works for data sources they know about. Your patients are getting care outside your system and in a growing # of clinical and community based settings. #hitexpo

21/ the regional #HIE is the only near-term solution that even remotely resembles semantic, ubiquitous #interoperability in #healthcare.
#hitexpo

22/ My recommendation to patients: You have to take matters into your own hands for now. Use consumer tools like Apple health records and even Dropbox like @ShahidNShah suggested in another #hitexpo session. Also, tell your clinicians to support and use the regional #HIE.

23/ So that got long. I’ll end it here. What do you think?

P.S. the #hitexpo was very good. You should check it out in 2019.

A big thank you to Don Lee for sharing these perspectives and diving in much deeper than we can do in 45 minutes on stage. This is what makes the Health IT Expo community special. People with deep understanding of a problem fleshing out the realities of the problem so we can better understand how to address them. Plus, the sharing happens year round as opposed to just at a few days at the conference.

Speaking of which, what do you think of Don’s thoughts above? Is he right? Is there something he’s missing? Is there more depth to this conversation that we need to understand? Share your thoughts, ideas, insights, and perspectives in the comments or on social media using the #HITExpo hashtag.

Making Healthcare Data Useful

Posted on May 14, 2018 I Written By

The following is a guest blog by Monica Stout from MedicaSoft

At HIMSS18, we spoke about making health data useful to patients with the Delaware Health Information Network (DHIN). Useful data for patients is one piece of the complete healthcare puzzle. Providers also need useful data to provide more precise care to patients and to reach patient populations who would benefit directly from the insights they gain. Payers want access to clinical data, beyond just claims data, to aggregate data historically. This helps payers define which patients should be included in care coordination programs or who should receive additional disease management assistance or outreach.

When you’re a provider, hospital, health system, health information exchange, or insurance provider and have the data available, where do you start? It’s important to start at the source of the data to organize it in a way that makes insights and actions possible. Having the data is only half of the solution for patients, clinicians or payers. It’s what you do with the data that matters and how you organize it to be usable. Just because you may have years of data available doesn’t mean you can do anything with it.

Historically, healthcare has seen many barriers to marrying clinical and claims data. Things like system incompatibility, poor data quality, or siloed data can all impact organizations’ ability to access, organize, and analyze data stores. One way to increase the usability of your data is to start with the right technology platform. But what does that actually mean?

The right platform starts with a data model that is flexible enough to support a wide variety of use models. It makes data available via open, standards-based APIs. It organizes raw data into longitudinal records. It includes services, such as patient matching and terminology mapping, that make it easy to use the data in real-world applications. The right platform transforms raw data into information that that aids providers and payers improve outcomes and manage risk and gives patients a more complete view of their overall health and wellness.

Do you struggle with making your data insightful and actionable? What are you doing to transform your data? Share your insights, experiences, challenges, and thoughts in the comments or with us on Twitter @MedicaSoftLLC.

About Monica Stout
Monica is a HIT teleworker in Grand Rapids, Michigan by way of Washington, D.C., who has consulted at several government agencies, including the National Aeronautics Space Administration (NASA) and the U.S. Department of Veterans Affairs (VA). She’s currently the Marketing Director at MedicaSoft. Monica can be found on Twitter @MI_turnaround or @MedicaSoftLLC.

About MedicaSoft
MedicaSoft  designs, develops, delivers, and maintains EHR, PHR, and UHR software solutions and HISP services for healthcare providers and patients around the world. MedicaSoft is a proud sponsor of Healthcare Scene. For more information, visit www.medicasoft.us or connect with us on Twitter @MedicaSoftLLC, Facebook, or LinkedIn.