Predictive Analytics Will Save Hospitals, Not IT Investment

Posted on October 27, 2017 I Written By

Anne Zieger is veteran healthcare editor and analyst with 25 years of industry experience. Zieger formerly served as editor-in-chief of FierceHealthcare.com and her commentaries have appeared in dozens of international business publications, including Forbes, Business Week and Information Week. She has also contributed content to hundreds of healthcare and health IT organizations, including several Fortune 500 companies. She can be reached at @ziegerhealth or www.ziegerhealthcare.com.

Most hospitals run on very slim operating margins. In fact, not-for-profit hospitals’ mean operating margins fell from 3.4% in fiscal year 2015 to 2.7% in fiscal year 2016, according to Moody’s Investors Service.

To turn this around, many seem to be pinning their hopes on better technology, spending between 25% and 35% of their capital budget on IT infrastructure investment. But that strategy might backfire, suggests an article appearing in the Harvard Business Review.

Author Sanjeev Agrawal, who serves as president of healthcare and chief marketing officer at healthcare predictive analytics company LeanTaaS, argues that throwing more money at IT won’t help hospitals become more profitable. “Healthcare providers can’t keep spending their way out of trouble by investing in more and more infrastructure,” he writes. “Instead, they must optimize the use of the assets currently in place.”

Instead, he suggests, hospitals need to go the way of retail, transportation and airlines, industries which also manage complex operations and work on narrow margins. Those industries have improved their performance by improving their data science capabilities.

“[Hospitals] need to create an operational ‘air traffic control’ for their hospitals — a centralized command-and-control capability that is predictive, learns continually, and uses optimization algorithms and artificial intelligence to deliver prescriptive recommendations throughout the system,” Agrawal says.

Agrawal predicts that hospitals will use predictive analytics to refine their key care-delivery processes, including resource utilization, staff schedules, and patient admits and discharges. If they get it right, they’ll meet many of their goals, including better patient throughput, lower costs and more efficient asset utilization.

For example, he notes, hospitals can optimize OR utilization, which brings in 65% of revenue at most hospitals. Rather than relying on current block-scheduling techniques, which have been proven to be inefficient, hospitals can use predictive analytics and mobile apps to give surgeons more control of OR scheduling.

Another area ripe for process improvements is the emergency department. As Agrawal notes, hospitals can avoid bottlenecks by using analytics to define the most efficient order for ED activities. Not only can this improve hospital finances, it can improve patient satisfaction, he says.

Of course, Agrawal works for a predictive analytics vendor, which makes him more than a little bit biased. But on the other hand, I doubt any of us would disagree that adopting predictive analytics strategies is the next frontier for hospitals.

After all, having spent many billions collectively to implement EMRs, hospitals have created enormous data stores, and few would argue that it’s high time to leverage them. For example, if they want to adopt population health management – and it’s a question of when, not if — they’ve got to use these tools to reduce outcome variations and improve quality of cost across populations. Also, while the deep-pocketed hospitals are doing it first, it seems likely that over time, virtually every hospital will use EMR data to streamline operations as well.

The question is, will vendors like LeanTaaS take a leading role in this transition, or will hospital IT leaders know what they want to do?  At this stage, it’s anyone’s guess.