UCSF Partners With Intel On Deep Learning Analytics For Health

Posted on January 30, 2017 I Written By

Anne Zieger is veteran healthcare editor and analyst with 25 years of industry experience. Zieger formerly served as editor-in-chief of FierceHealthcare.com and her commentaries have appeared in dozens of international business publications, including Forbes, Business Week and Information Week. She has also contributed content to hundreds of healthcare and health IT organizations, including several Fortune 500 companies. She can be reached at @ziegerhealth or www.ziegerhealthcare.com.

UC San Francisco’s Center for Digital Health Innovation has agreed to work with Intel to deploy and validate a deep learning analytics platform. The new platform is designed to help clinicians make better treatment decisions, predict patient outcomes and respond quickly in acute situations.

The Center’s existing projects include CareWeb, a team-based collaborative care platform built on Salesforce.com social and mobile communications tech; Tidepool, which is building infrastructure for next-gen smart diabetes management apps; Health eHeart, a clinical trials platform using social media, mobile and realtime sensors to change heart disease treatment; and Trinity, which offers “precision team care” by integrating patient data with evidence and multi-disciplinary data.

These projects seem to be a good fit with Intel’s healthcare efforts, which are aimed at helping providers succeed at distributed care communication across desktop and mobile platforms.

As the two note in their joint press release, creating a deep learning platform for healthcare is extremely challenging, given that the relevant data is complex and stored in multiple incompatible systems. Intel and USCF say the next-generation platform will address these issues, allowing them to integrate not only data collected during clinical care but also inputs from genomic sequencing, monitors, sensors and wearables.

To support all of this activity obviously calls for a lot of computing power. The partners will run deep learning use cases in a distributed fashion based on a CPU-based cluster designed to crunch through very large datasets handily. Intel is rolling out the computing environment on its Xeon processor-based platform, which support data management and the algorithm development lifecycle.

As the deployment moves forward, Intel leaders plan to study how deep learning analytics and machine-driven workflows can optimize clinical care and patient outcomes, and leverage what they learn when they create new platforms for the healthcare industry. Both partners believe that this model will scale for future use case needs, such as larger convolutional neural network models, artificial networks patterned after living organizations and very large multidimensional datasets.

Once implemented, the platform will allow users to conduct advanced analytics on all of this disparate data, using machine learning and deep learning algorithms. And if all performs as expected, clinicians should be able to draw on these advanced capabilities on the fly.

This looks like a productive collaboration. If nothing else, it appears that in this case the technology platform UCSF and Intel are developing may be productized and made available to other providers, which could be very valuable. After all, while individual health systems (such as Geisinger) have the resources to kick off big data analytics projects on their own, it’s possible a standardized platform could make such technology available to smaller players. Let’s see how this goes.